Learning on the Fly: Rapid Policy Adaptation
via Differentiable Simulation

Jiahe Pan*, Jiaxu Xing*, Rudolf Reiter, Yifan Zhai, Elie Aljalbout, Davide Scaramuzza
Robotics and Perception Group
University of Zurich, Switzerland
jiapan@student.ethz.ch, {jixing, rreiter, dzhai}@ifi.uzh.ch
elie.el.jalbout2@gmail.com, sdavide@ifi.uzh.ch

Abstract: Learning control policies in simulation enables rapid, safe, and cost-
effective development of advanced robotic capabilities. However, transferring
these policies to the real world remains difficult due to the sim-to-real gap, where
unmodeled dynamics and environmental disturbances degrade performance. Cur-
rent approaches, such as domain randomization, improve robustness but cannot
capture the full range of real-world variations. In this work, we approach these
problems from a different perspective. Instead of relying on diverse training con-
ditions, we focus on adapting the learned policy directly in the real world and in
real time. To achieve this, we propose a policy adaptation framework that com-
bines online residual dynamics learning with real-time policy fine-tuning. Starting
from a lightweight rigid-body model, our framework refines the dynamics using
real-world data, thereby augmenting the simulation with previously unmodeled
effects and disturbances such as unknown payloads and wind. The updated simu-
lation is then used within a differentiable simulation framework to compute policy
gradients efficiently, enabling real-time updates with minimal sample and compu-
tational cost. All components of our system are designed for rapid adaptation, en-
abling the policy to adjust to unseen disturbances within 5 seconds. Our approach
supports both state-based and vision-based inputs. It is validated in simulation
as well as on real quadrotors under diverse disturbance conditions, consistently
outperforming both model-based controllers and learning-based methods trained
with domain randomization.

1 Introduction

Robot learning through simulation has seen great success in recent years, thanks to the rapid im-
provements in computer hardware and advancements in efficient physics simulation [1]. Simulation
provides a fast, safe, and cost-effective way to collect data and train policies, enabling experiments
that would be impractical or unsafe in the real world. However, transferring control policies learned
purely in simulation to physical systems is challenging. Even with high model fidelity in simulation,
many system parameters are difficult to identify, making accurate alignment between simulation and
reality hard to achieve. In addition, unmodeled effects such as aerodynamic turbulence, sensor noise,
and actuator delays further complicate the real-world dynamics. The resulting mismatch, known as
the sim-to-real gap [2], remains a central obstacle to deploying learning-based controllers in the
real world. Bridging this gap is essential to retain the advantages of simulation while ensuring that
policies perform reliably under the complexity and variability of real-world conditions. Domain
randomization is a common strategy to address this issue [3, 4, 5, 6], in which simulation param-
eters such as dynamics, sensor noise, and visual appearance are varied during training to expose
the policy to a wide range of possible deployment scenarios. By learning in diverse conditions,
the agent develops robust policies that are less likely to overfit to the specific characteristics of a
single environment. However, domain randomization cannot anticipate every possible real-world
condition [7]. When the environment shifts beyond the randomized distribution, policy performance

9th Conference on Robot Learning (CoRL 2025) Workshop, Seoul, Korea.

might strongly degrade. Broadening the range of randomization increases coverage but also inflates
the exploration space, slowing convergence and reducing learning efficiency [8]. Beyond domain
randomization, Real2Sim2Real pipelines [9, 10] have shown strong sim-to-real transfer by refining
simulation models with real-world data before retraining policies for deployment. While offline
residual learning is effective in improving transfer, these methods require extensive offline data col-
lection and long retraining cycles, making them unsuitable for online, real-time adaptation.

In this work, we try to approach these
problems from another perspective: we i

propose to rapidly adapt the policy to un- Analytical (Simplified) Control ﬁ E
known external disturbances in the real é ; — MLP Policy

Simulated Environment Real World Deployment

External
Disturbance

world and in real time. We evaluate oo
our method on an agile quadrotor plat-

form, whose nonlinear dynamics and sen- Dynamics

sitivity to aerodynamic effects make it a Residual (Leamned)

challenging benchmark for adaptive con- §

Data Collection

) Trajectory Buffer
Supervised Training yecton

trol [11]. The core insight of the pro-
posed framework is to unify online resid-
ual dynamics learning with real-time pol-

icy adaptation inside a differentiable sim- Figure 1: Overview of the key components in our proposed

ulation frame.work. All system compo- approach. (right) The policy is continuously deployed in the
nents are designed to update model esti- real world, and trajectories are collected into a buffer. (bot-

mation and policy as quickly as possible, tom) Residual dynamics are trained using the real-world data
ideally within a few seconds, during run- '© refine the hybrid simulation dynamics. (left) Based on the

time. In this way, the policy can “over- latest simulation dynamics, the policy is rapidly adapted via

. . . . differentiable simulation.
fit” rapidly to the current scenario, which
paradoxically enables it to become more “generalizable” across diverse real-world conditions.

For our pipeline, we start with a lightweight rigid-body dynamics model and continuously refine it
by learning residual dynamics from real-world flight data. By embedding the residual-augmented
model in a differentiable simulator, we improve the fidelity of the simulated dynamics through online
refinement, enabling more accurate and sample-efficient adaptation. Another key innovation is our
alternating optimization scheme, where policy learning and residual model learning are interleaved
so that each batch of real-world data is used efficiently for both dynamics refinement and control
improvement. All of these components ensure the simulation is aligned with reality and enables
real-time adaptation to unknown disturbances, even controlling directly from perceptual input. We
evaluate the proposed framework in both simulation and real-world experiments on an agile quadro-
tor platform, considering a range of environmental disturbance conditions. In state-based control
tasks such as hovering, our method attains an average error of 0.105 m, an 81% reduction over £;-
MPC (0.552 m) and 55% over DATT [12] (0.231 m), while ensuring stable flight under modeling
errors and out-of-distribution disturbances. In vision-based tasks, our framework achieves similar
gains, demonstrating that real-time adaptation remains effective under partial or noisy observations,
something unattainable with classical control methods in the absence of state estimation.

Contributions. We propose an online adaptive control framework that combines residual dynamics
learning with real-time policy adaptation in a differentiable simulation environment, enabling real-
world policy adaptation within 5 seconds. Starting from a simplified dynamics model, the frame-
work refines the dynamics online with real-world data to capture mismatches and unpredictable
disturbances. We propose an alternating optimization scheme that interleaves policy learning and
dynamics learning, ensuring that each real-world sample improves both components. The frame-
work supports both state-based and vision-based inputs, and we validate its effectiveness through
extensive simulation and real-world quadrotor experiments, where it outperforms both classical and
learning-based controllers under large unseen disturbances. Together, our framework shows that
policies can learn and adapt within seconds in the real world, reducing the reliance on domain ran-
domization, which can fail to capture real-world out-of-distribution complexity.

2 Related Work

Policy Learning in Differentiable Simulation. Differentiable simulation uses smooth, differen-
tiable dynamics and rewards to enable policy learning via first-order gradients [13], offering sub-
stantial gains in sample efficiency and training time over traditional RL [14]. It has been applied to
direct policy parameterizations, such as parametric curve frequencies for swimming robots [15] and
sinusoidal policies for robotic cutting [16], as well as to neural-network policies. However, unsta-
ble gradients often limit applications to short-horizon tasks with simplified contacts and restricted
start-state variation [17, 18, 19, 20]. To address this, prior work has explored enhancements such as
early-stopping simulations at contact events, truncated BPTT [21], and reward augmentation with a
learned critic [22, 23].

Aligning Simulation with the Real-World. Closing the sim-to-real gap requires quantifying the
misalignment between simulation and real-world dynamics, typically through system identification
or residual dynamics learning. System identification estimates parameters of an analytical dynam-
ics model from input—output data [24, 25], but its representation capacity is limited to the mod-
eled system [26], making it less effective for capturing complex dynamics and disturbances [27].
Residual dynamics learning addresses this by directly modeling the discrepancy between analyti-
cal predictions and real-world measurements. It has been applied to improve quadrotor odometry
and tracking [28, 29, 30], learn motor delays in quadrupeds [10], and predict residual forces in soft
robots [31]. In [32], it has been demonstrated that the perception encoding can also be aligned
between simulation and the real world using a contrastive learning method.

Learning-Based Adaptive Control. Residual dynamics models have been used for online dis-
turbance estimation, via offline-trained networks [33], Gaussian Processes [30], or differentiable
simulation-based system identification [34]. These methods mainly augment optimization-based
controllers like MPC, which rely on full state information and do not directly extend to vision-based
control. Neural policies have also been conditioned on disturbance estimates [12, 35, 36], but since
they are trained offline in randomized simulations and remain fixed at deployment, they struggle
with domain shifts and unseen conditions [37, 12].

3 Methodology

Our approach consists of two phases: policy pretraining and online adaptation. As shown in Fig. 2,
during pretraining, we train a base policy using the low-fidelity dynamics model without residual
dynamics or domain randomization, which is used as the initial policy for online adaptation. For
online adaptation, two independent learning processes run in parallel. The residual dynamics learn-
ing loop continuously refines a residual dynamics network using a rolling history buffer of recorded
quadrotor states and actions. The policy adaptation loop embeds the latest residual dynamics net-
work parameters into the differentiable simulation pipeline and performs fast policy adaptation.

Policy Adaptation via Differentiable Simulation. We model the quadrotor as a discrete-time dy-
namical system with continuous state and action spaces X and U, respectively. The system evolves
according to the hybrid dynamics model fhybria : X x U — X which comprises the analytical and
learned residual components, and describes the system evolution ©y41 = fhybrid (¢, us) Over time.
At time step ¢, an observation model h : X — O generates an observation o; = h(z;) € O from
the state x4, and is passed as input to a deterministic and differentiable policy network 7y : X' — U
which outputs an action u; = 7r¢(ot), and finally a deterministic, smooth and differentiable reward
function r : X x U — R emits a reward r; = r(x, u;) based on the state-action pair.

Policy Optimization Using Analytical Gradients. The policy learning objective is to maximize
the cumulative task reward R(¢) over an N-step rollout under the policy parameters ¢ via

N-1 N-1
mgx’R(fb) = Z r(xe,up) = Z (e, T (h(zy))). (D)
t=0 t=0

Policy Training Hybrid Diff. Simulator R
every 5 seconds MLP Policy

Lot e .,
Acti€ 511?1]'71111}:%1 N ‘5/1/,(} Rollout 50 Hz
Dynamics Policy Control
Reward Real World

} Deployment
ey, Residual
@ Dynamics grate s :

Residual External
Learning Forward Disturbance
Residual >
Network ollec
every 3 seconds chwor Clltoet

Trajectories

MLP Policy

Real-world
Dataset

Figure 2: Detailed illustration of the information flow both within and between the three interleaved components
of our proposed approach, which run in parallel across multiple threads in separate ROS nodes.

By leveraging the differentiable dynamics and reward structure, we can obtain first-order analytical
policy gradients of the objective (1) via Back-Propagation Through Time (BPTT) (see [38] for a full
derivation). The policy gradient and the update rule for the policy parameters ¢ are given by

87} .’E] aSC»L ﬁrt 8Ut
VoR(9) = Z Z ot | H + ouy 8¢))

Prt1 = Pk + aV¢R(¢k),

where dd is the derivative matrix of the system dynamics fuybria, and « is the learning rate. We

build upon an existing open-source differentiable simulator for quadrotors [14] written entirely in
JAX to leverage both its automatic-differentiation framework for computing the analytical policy
gradients and GPU-accelerated computing for efficient parallel simulation.

Residual Dynamics Learning. Given the quadrotor state ' = [p', R",v "] consisting of po-
sition p € R3, rotation matrix R € SO(3), linear velocity v € R3, along with the normalized
collective thrust command ¢ € R and the body rates command weyng € R3, we form the con-
catenated input vector [z, u'] = [p",R",v",c,w/! ;] € RY. An MLP network fes with
two 128-dimensional hidden layers is trained to predict the residual acceleration a,.; € R?, de-
fined as the difference between the ground-truth acceleration ag; € R® measured on the real sys-
tem and the theoretical acceleration @ = f,([z,u]) € R® from the analytical dynamics model
fa (3). The residual acceleration training targets are computed as a,.s = agy — a. Given a batch
of |B| samples {[z, u} ares icB, we train the model by minimizing the loss function L, via
ming Lres = ming |B‘ Z 2lllate — fres([z,ul®; 0)12 + ﬁzlel |[W![|2. The loss comprises a
standard MSE term and a spectral norm regularization term, where the latter has been shown to
improve generalization beyond the training distribution [39] by regulating the network’s Lipschitz
constant [33]. Here, W is the weight matrix of the /-th network layer, and 8 controls the regular-
ization strength. The loss is minimized using the Adam optimizer [40].

Design Choices for Maximum Runtime Efficiency. During forward simulation, we use a hybrid
dynamics model fyy1ria Obtained by additively combining the analytical f, and learned residual fres
dynamic models. Here, we use a simple, low-fidelity analytical dynamics model given by (3) which
models the quadrotor as a point-mass. The resulting acceleration given a state and action input pair
is computed as Gnybria = @ + Qres, Where Gyq is the network prediction. Finally, the quadrotor
states are simulated via Runge-Kutta 4 time-integration at 50 Hz of the dynamics (3) using Gnybrid-

While the hybrid dynamics model fyy1,ria composed of differentiable analytical and learned com-
ponents remains overall fully differentiable, we only perform gradient backpropagation through the
analytical dynamics model and not the frozen network to obtain the policy gradients. This was in-
spired by prior work in policy learning using differentiable simulation for both quadruped [41] and

quadrotor [14] control, which showed that combining accurate forward dynamics simulation with
the backpropagation of a surrogate gradient based on a simpler dynamics model achieves faster run-
time without impacting the resulting policy performance. We analyze and justify the above design
choices through simulated experiments, and present and discuss the results in Appendix C.

Full vs. Residual Policy Adaptation. We compare two existing methods of adapting a pretrained
policy: full vs. residual adaptation [42]. Full adaptation involves updating all parameters of the
policy network, similar to [43], whereas residual adaptation freezes all pretrained parameters and
instead adapts an additive residual policy module, which forms a lower-dimensional trainable pa-
rameter space. The latter has been shown to achieve more memory and parameter-efficient policy
adaptation for applications such as autonomous racing and quadruped control [44, 23]. We imple-
ment the residual policy module as low-rank weight matrices added in parallel to the pretrained
policy network, similar to the low-rank adaptation (LoRA) implementation commonly used to fine-
tune Large-Language Models [45]. We seek to understand whether residual policy adaptation en-
ables better sample efficiency and learning stability than full adaptation in low-data regimes during
online policy adaptation, where relatively few policy rollout samples are generated and used.

4 Experiments and Results

4.1 Experimental Setup

Task Definitions. We evaluate our approach on stabilizing hover and trajectory tracking tasks for
the quadrotor platform. For stabilizing hover, the policy is required to regulate the quadrotor state
towards a goal position pqes and maintain it at all times, which is non-trivial given the quadrotor’s
non-linear and unstable dynamics (3). We evaluate both a state-based control policy which at each
time step receives the observation o = [p, R,v|", and an end-to-end vision-based policy which
only receives the projected pixel coordinates of 7 visual features from the past 5 time steps and
the last 3 actions. Our training setup closely follows the open-source environment setup in [14].
Trajectory tracking instead requires following a reference trajectory defined as a time-parameterized
sequence of quadrotor states, which is generated to be smooth up to the acceleration level. We use
two such trajectories, Circle and Figure-8, for this task in a state-based training setting. The reward
definitions for both tasks and more details on the reference trajectories are included in Appendix B.

Pretraining Phase. We parameterize the policy as an MLP with two 512-dim hidden layers. For
both state-based hovering and trajectory tracking, we train the base policy from random initialization
for 300 epochs across 100 parallel environments. Each epoch lasts 3 seconds or 150 simulation steps.
We then train the partially initialized policy for 500 epochs across 300 parallel environments.

Online Adaptation Phase. The quadrotor states and actions are continuously recorded into a rolling
history buffer at 50 Hz and are used to train the residual dynamics network. For the stabilizing hover
and trajectory tracking tasks, we use history buffer sizes of 100 and 250, which are equivalent to
2 and 5 seconds of past quadrotor states and actions, respectively. For residual dynamics learning,
we continuously refine an ensemble of 3 networks initialized with different random seeds, and use
the empirical mean prediction from all models as the final predicted residual acceleration for a given
input. Empirically, we found this to effectively reduce the prediction variance arising from epistemic
uncertainty due to the limited samples in the data buffer. We run residual dynamics learning every
3 seconds and train the networks for 100 epochs, which takes approximately 2 seconds. We run
policy adaptation every 5 seconds and train the policy with 10 parallel simulated environments
for 30 epochs, which takes approximately 1.5 seconds. All experiments are run on a workstation
equipped with an Nvidia RTX 4090 GPU with 24 GB of VRAM.

Baselines Methods. We compare against a state-of-the-art learning-based adaptive control method,
Deep Adaptive Tracking Control (DATT) [12], which uses model-free RL with domain randomiza-
tion and online £, adaptive control-based disturbance estimation. For quadrotor control, this method
has been shown to outperform Rapid Motor Adaptation (RMA) [36], which is a similar approach but
instead uses a learned encoder for disturbance estimation. We used the open-source implementation

Table 1: Average steady-state error (in m) from the hovering target across 8 rollouts. The errors of the two
best-performing methods for each disturbance condition are highlighted.

Method No disturbance Small disturbance Large disturbance

L,-MPC 0.091 £ 0.052 0.134 £ 0.073 0.552 £0.130
DATT 0.013 £ 0.004 0.009 £ 0.005 0.231 £ 0.004
Ours 0.015 £ 0.001 0.008=+ 0.002 0.105 £ 0.007

Ours (Residual) 0.023 +£ 0.002 0.015 £ 0.004 0.125 £ 0.002

of [46] and the exact same training procedure and hyperparameter settings to train both state-based
hovering and trajectory tracking policies using PPO for 20 million simulation steps. Using their orig-
inal domain randomization implementation, we simulated 3-dimensional acceleration disturbances
as random walks within the bounds +/- [1, 1, 1] m/s?. We also compare against an adaptive Nonlin-
ear MPC controller (£1-MPC) as implemented in [46], which uses a Model Predictive Path Integral
(MPPI) formulation and the same £; adaptive control-based disturbance estimation as in DATT.

4.2 Experimental Results

For evaluation, we used a realistic quadrotor simulator [11] equipped with the BEM model for aero-
dynamic effects and high-frequency simulations of the controller dynamics. We simulated three lev-
els of constant, uniform acceleration disturbances: [0,0, 0] m/s? (none), [0.5,0.5,0.5] m/s? (small),
and [2,2,2] m/s? (large). The first two conditions are within the domain randomization range used
for DATT training, whereas the third condition was deliberately chosen to be out of distribution to
evaluate its generalization capabilities. The policy outputs actions consisting of mass-normalized
collective thrust and desired body rates to the on-board flight controller at 50 Hz.

Performance Comparison to Baseline Approaches. For the state-based stabilizing hover task,
we ran each method under all disturbance conditions from a set of 8 different starting positions
around the hovering target, and used the final steady-state error as the performance metric. The
baseline methods were run for 10 seconds to allow transient adaptation effects to settle, while our
method (both state and vision-based) was run for 30 seconds to allow a few learning steps to take
place. As summarized in Tab. 1, results show that our method consistently exhibits superior or
comparable performance to the baselines. Fig. 3a illustrates that our method rapidly adapts the
policy to compensate for the large disturbances within 2-3 adaptation steps (10-15 seconds of wall
time). DATT performs well under both the none and small disturbance scenarios which are both
within its training distribution, but struggles to adapt to the larger, out-of-distribution disturbance.

We exclude the baseline methods from the vision-based hovering comparison, as it would require
significant modifications to their algorithms. As shown in Tab. 3, our vision-based approach re-
sulted in larger errors than our state-based approach. We empirically observed that adaptation of
the vision-based policy is less stable than the state-based counterpart and may require more policy

1.75 t]]
1 1 1
1.50 : . !
3 : : f—
125 i H | o RefX
~ 025 4'_’—1—’1¥
g o : ; :
g " : : ==
5025 i i | R A i : 1
g] 1 I H
A L6 } i i ool T T T i
14 ‘ ‘ = ' | i i i RE="
: : : = 0.75 1 1 1 1 1 s
0 2 4 6 8 10 12 14 0 5 10 15 20 25 30
Time (s) Time (s)
(a) State-based hovering under large disturbance. (b) Figure-8 tracking under small disturbance.

Figure 3: Real-time policy adaptation using our proposed approach in simulation. Vertical dashed lines indicate
policy update steps. Shaded regions represent the error from the reference.

Table 2: Average tracking errors (in m) for two different trajectories (Circle and Figure-8). The errors of the

two best-performing methods for each disturbance condition are highlighted.

Trajectory Method No disturbance = Small disturbance Large disturbance

L1-MPC 0.113 £ 0.027 0.096 £ 0.063 0.410 £0.155

Circle DATT 0.058 £ 0.016 0.040 £ 0.024 crash
Ours 0.167 £ 0.048 0.135 £ 0.101 0.349 £ 0.175
Ours (Residual) 0.129 4+ 0.051 0.159 + 0.043 0.326 £ 0.061
L1-MPC 0.109 £ 0.063 0.121 £ 0.025 0.281 + 0.097

Fioure-8 DATT 0.078 £ 0.037 0.082 £ 0.046 crash
g Ours 0.068+ 0.040 0.045 £ 0.03 0.137 £ 0.098
Ours (Residual) 0.069 + 0.047 0.059 £ 0.043 0.110 + 0.037

learning epochs or update steps, most likely due to the lack of explicit state information and sample
inefficiency in learning vision-based control.

For trajectory tracking, we recorded 60-second rollouts and computed the average tracking error
(m) within the last 10-second window as the performance metric. As shown in Tab. 2, our approach
achieves comparable performance to the baselines for both Circle and Figure-8 across all distur-
bance conditions. Fig. 3b illustrates that the large initial sim-to-real gap due to policy pretraining
using the low-fidelity dynamics model (3) already significantly impacts tracking accuracy even un-
der the small disturbance condition. However, our method is able to rapidly adapt and achieve much
improved tracking accuracy after only 4 policy update steps (20 seconds of wall time). For DATT,
consistent with findings from state-based hovering, it fails to generalize to the out-of-distribution
disturbances and results in crashes for both reference trajectories. Finally, we observe that us-

Table 3: Average steady-state error (in m) from the hovering target across 8 rollouts. The errors of the two
best-performing methods for each disturbance condition are highlighted.

Method No disturbance Small disturbance Large disturbance
Ours State 0.015 £+ 0.001 0.008 & 0.002 0.105 £+ 0.007
Ours 0.082 £ 0.009 0.099 +£ 0.021 0.207 £ 0.041
Ours (Residual) 0.084 +0.014 0.111 +£0.024 0.205 £+ 0.048

ing residual policy adaptation with our approach achieved comparable performances to using full
adaptation across all tasks and disturbance conditions. Therefore, while residual adaptation may
not provide significant benefit regarding sample efficiency for policy learning, it still remains as a
parameter-efficient, and hence, memory-efficient paradigm to adapt or fine-tune a pretrained policy,
which may be particularly advantageous for policy networks that are significantly larger than the
MLP used in our experiments.

Computational and Sample Efficiency Analysis. We analyze and compare the sample and com-
putational efficiency of our approach against DATT for state-based tasks. All runtimes are recorded
from running on an Nvidia RTX 4090 GPU (24 GB VRAM) with an Intel 14900KF CPU. For our
approach, policy pretraining uses 300 epochs across 100 environments, which is equivalent to 4.5
million steps in total, and takes approximately /5 seconds. Each online policy adaptation step runs
for 30 epochs across 10 environments (or 45k steps) and takes about /.5 seconds. Empirically,
we observed that good-performing policies can in fact be obtained using fewer epochs and envi-
ronments, thanks to the low-variance first-order policy gradients from differentiable simulation. In
comparison, DATT trains the policy for 20 million steps, which takes around 2 hours, and requires no
further training at runtime. For DATT, we also observed slower convergence to lower rewards when
training with larger domain randomization, which is likely a result of the performance-generalization
trade-off [47], possibly exacerbating the high variance in the policy gradient estimates. Our ap-
proach enables more efficient compute usage by simplifying initial policy training without domain
randomization or curricula, and by supporting sample- and compute-efficient online adaptation to
out-of-distribution scenarios where domain randomization fails to generalize.

20 i i i NN D A A A A
+ I 1 21\ AV R AN A N AR SN/ Y/ N Y AN
1.5 L - D sttt e 1 ’ ot M g Vi YA N v
¢ N VRN /
] 1 [l b 4 \ A A \V / A Ao X
l : s | AV G VAN P VA AN it
10 . Y g Z
= 05 I I I g 051 A FANEN) SAY ,)p n ’J\ N ,)}| IS l‘{ F 3 Ili A ,’J.
g - - : E ol BB Da b And At A A A A A
L L L .) 1 1 " 1 Loy
g : : TN B VOV Y
= c= 0S5y v R A R)/ u ==
=-05 L L L = I L L 1 I 1 1
& 20 3 125 1 1 1 1 T T T
Q_‘ 1 1 1 ﬂ- 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1.00 1 T T 1 t
15 : : : % 7 1 1 1 ! 1 1 % =
10 i i i ¢ 0.75 1 1 i i i i i
0.0 2.5 5.0 75 10.0 12.5 15.0 17.5 20.0 5 1 3
0 5 10 5 20 25 30 35
Time (s) Time (s)
(a) State-based hovering with added mass and wind. (b) Figure-8 tracking on the large quadrotor.

Figure 4: Real-world policy adaptation using our proposed approach in real-time. Vertical dashed lines indicate
policy update steps. Shaded regions represent the error from the reference.

4.3 Real-World Validation

We validated our approach in real-world experiments for both stabilizing hover and trajectory track-
ing tasks with various disturbance conditions, including both modifications to the hardware and wind
disturbances. Detailed visualizations and experiments are provided in the supplementary materials.
We used a motion-capture system to provide state estimation of the quadrotor at 100 Hz. The exact
same procedures as the simulated experiments were used for both the pretraining and online adapta-
tion phases. We use two quadrotors adapted from the Agilicious platform [11]: a small lightweight
quadrotor and a larger, heavier one with different dynamical properties; further details are provided
in Appendix D. An additional quadrotor stand was rigidly attached to the small quadrotor from be-
low, increasing its mass from 120 g to 190 g by approximately 60% while simultaneously altering
its inertial properties. Therefore, both the existing sim-to-real gap and the extra disturbances con-
tribute to significant out-of-distribution dynamics that were unseen during policy pretraining. Fig. 4a
shows the recorded trajectory of adaptation of the state-based hovering policy on the modified small
quadrotor under a diagonal wind disturbance. Due to the highly imbalanced and non-uniform drag
profile of the modified quadrotor, the wind disturbance forces are more complex and unstable than
the constant, uniform disturbance used in simulated experiments. However, our method still enables
the policy to rapidly adapt with 2-3 policy update steps to compensate for disturbances, which takes
approximately 10 to 15 seconds. Similar results were observed for vision-based hovering; the adap-
tation process appeared less stable than state-based hovering, which is consistent with our findings
from the simulated experiments. Real-world experiments show that our approach achieves accurate
trajectory tracking under various disturbance conditions. Here, we present one particular experiment
where a base Figure-8-tracking policy was deployed on the large quadrotor. As shown in Fig. 4b,
despite the poor initial tracking and state-space exploration caused by the large sim-to-real gap, the
policy quickly adapts and achieves much improved tracking within just a few policy update steps.

5 Discussions

We propose a novel rapid policy adaptation framework for combining online residual dynamics
learning from real-world flight data and sample-efficient policy learning via differentiable simula-
tion. With all system components designed for rapid adaptation, we demonstrate the possibility
to adapt both state and vision-based policies to unknown disturbances within several seconds. One
limitation is that our residual dynamics network only predicts residual linear accelerations. One lim-
itation is that the proposed residual network does not model dynamic disturbances, i.e., disturbances
with internal states. In order to improve the current architecture, recurrent networks or state-to-state
residuals would model a larger class of time-dependent disturbances [26]. Moreover, due to the
tightly-coupled dependencies between data collection via policy rollout and policy learning using
learned residual dynamics from the collected data, the quality and rate of convergence may be af-
fected by biases or noise in the learned residual dynamics. The dependency is closely related to the
concept of performative prediction [48] in related machine learning fields. Thus, future work will
explore uncertainty-driven data collection where the policy is augmented by active exploration to
simultaneously improve task performance and reduce uncertainty in the real-world dynamics.

References

[1] J. Collins, S. Chand, A. Vanderkop, and D. Howard. A review of physics simulators for robotic
applications. IEEE Access, 9:51416-51431, 2021.

[2] A. Waheed, M. Areti, L. Gallantree, and Z. Hasnain. Quantifying the sim2real gap: Model-
based verification and validation in autonomous ground systems. I[EEE Robotics and Automa-
tion Letters, 2025.

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 23-30. IEEE, 2017.

[4] J. Tobin, L. Biewald, R. Duan, M. Andrychowicz, A. Handa, V. Kumar, B. McGrew, A. Ray,
J. Schneider, P. Welinder, et al. Domain randomization and generative models for robotic grasp-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 3482-3489. IEEE, 2018.

[5] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki,
A. Petron, M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation.
The International Journal of Robotics Research, 39(1):3-20, 2020.

[6] OpenAl, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,
A. Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba, and L. Zhang. Solving rubik’s cube with a robot hand, 2019.
URL https://arxiv.org/abs/1910.07113.

[7] H. Wang, J. Xing, N. Messikommer, and D. Scaramuzza. Environment as policy: Learning
to race in unseen tracks. 2025 IEEE International Conference on Robotics and Automation
(ICRA), 2025.

[8] B. Mehta, M. Diaz, F. Golemo, C. J. Pal, and L. Paull. Active domain randomization. In
Conference on Robot Learning, pages 1162—1176. PMLR, 2020.

[9] E. Kaufmann, L. Bauersfeld, A. Loquercio, M. Miiller, V. Koltun, and D. Scaramuzza.
Champion-level drone racing using deep reinforcement learning. Nature, 620(7976):982-987,
Aug 2023. ISSN 1476-4687.

[10] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[11] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun, L. Bauersfeld, T. Laengle, G. Cioffi,
Y. Song, A. Loquercio, et al. Agilicious: Open-source and open-hardware agile quadrotor for
vision-based flight. Science Robotics, 7(67):eabl6259, 2022.

[12] K. Huang, R. Rana, A. Spitzer, G. Shi, and B. Boots. Datt: Deep adaptive trajectory tracking
for quadrotor control. In Conference on Robot Learning, pages 326-340. PMLR, 2023.

[13] R. Newbury, J. Collins, K. He, J. Pan, I. Posner, D. Howard, and A. Cosgun. A review of
differentiable simulators. /EEE Access, 2024.

[14] J. Heeg, Y. Song, and D. Scaramuzza. Learning quadrotor control from visual features us-
ing differentiable simulation. In 2025 International Conference on Robotics and Automation
(ICRA). IEEE, 2025.

[15] E. Nava, J. Z. Zhang, M. Y. Michelis, T. Du, P. Ma, B. F. Grewe, W. Matusik, and R. K.
Katzschmann. Fast aquatic swimmer optimization with differentiable projective dynamics and
neural network hydrodynamic models. In International Conference on Machine Learning,
pages 16413-16427. PMLR, 2022.

https://arxiv.org/abs/1910.07113

[16] E. Heiden, M. Macklin, Y. Narang, D. Fox, A. Garg, and F. Ramos. Disect: A differentiable
simulation engine for autonomous robotic cutting. In Robotics: Science and Systems, 2021.

[17] J. Degrave, M. Hermans, J. Dambre, and F. Wyffels. A differentiable physics engine for deep
learning in robotics. Frontiers in Neurorobotics, 13:6, 2019.

[18] M. Geilinger, D. Hahn, J. Zehnder, M. Bicher, B. Thomaszewski, and S. Coros. Add: Analyt-
ically differentiable dynamics for multi-body systems with frictional contact. ACM Transac-
tions on Graphics (TOG), 39(6):1-15, 2020.

[19] Y.-L. Qiao, J. Liang, V. Koltun, and M. C. Lin. Scalable differentiable physics for learning
and control. In Proceedings of the 37th International Conference on Machine Learning, pages
7847-7856, 2020.

[20] J. Xu, S. Kim, T. Chen, A. R. Garcia, P. Agrawal, W. Matusik, and S. Sueda. Efficient tactile
simulation with differentiability for robotic manipulation. In Conference on Robot Learning,
pages 1488-1498. PMLR, 2023.

[21] J. Xu, V. Makoviychuk, Y. Narang, F. Ramos, W. Matusik, A. Garg, and M. Macklin. Accel-
erated policy learning with parallel differentiable simulation. In International Conference on
Learning Representations, 2022.

[22] I. Georgiev, K. Srinivasan, J. Xu, E. Heiden, and A. Garg. Adaptive horizon actor-critic for pol-
icy learning in contact-rich differentiable simulation. In Proceedings of the 41st International
Conference on Machine Learning, pages 15418-15437, 2024.

[23] J. Y. Luo, Y. Song, V. Klemm, F. Shi, D. Scaramuzza, and M. Hutter. Residual policy learn-
ing for perceptive quadruped control using differentiable simulation. In 2025 International
Conference on Robotics and Automation (ICRA). IEEE, 2025.

[24] L. Ljung. System Identification (2nd ed.): Theory for the User. Prentice Hall PTR, USA, 1999.
ISBN 0136566952.

[25] A. Chiuso and G. Pillonetto. System identification: A machine learning perspective. Annual
Review of Control, Robotics, and Autonomous Systems, 2(1):281-304, 2019.

[26] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme. Neuralsim: Augmenting
differentiable simulators with neural networks. In 2021 IEEE International Conference on
Robotics and Automation (ICRA), pages 9474-9481. IEEE, 2021.

[27] G. Cioffi, L. Bauersfeld, and D. Scaramuzza. Hdvio: Improving localization and disturbance
estimation with hybrid dynamics vio. In Robotics: Science and Systems, 2023.

[28] L. Bauersfeld, E. Kaufmann, P. Foehn, S. Sun, and D. Scaramuzza. Neurobem: Hybrid aero-
dynamic quadrotor model. In Robotics: Science and Systems, 2024.

[29] G. Cioffi, L. Bauersfeld, and D. Scaramuzza. Hdvio2.0: Wind and disturbance estimation with
hybrid dynamics vio. arXiv preprint arXiv:2504.00969, 2025.

[30] G. Torrente, E. Kaufmann, P. Fohn, and D. Scaramuzza. Data-driven mpc for quadrotors. IEEE
Robotics and Automation Letters, 6(2):3769-3776, 2021.

[31] J. Gao, M. Y. Michelis, A. Spielberg, and R. K. Katzschmann. Sim-to-real of soft robots with
learned residual physics. IEEE Robotics and Automation Letters, 2024.

[32] J. Xing, L. Bauersfeld, Y. Song, C. Xing, and D. Scaramuzza. Contrastive learning for enhanc-
ing robust scene transfer in vision-based agile flight. In 2024 IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2024.

10

[33] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J.
Chung. Neural lander: Stable drone landing control using learned dynamics. In 2019 IEEE
International Conference on Robotics and Automation (ICRA), pages 9784-9790. IEEE, 2019.

[34] S. Chen, K. Werling, A. Wu, and C. K. Liu. Real-time model predictive control and system
identification using differentiable simulation. IEEE Robotics and Automation Letters, 8(1):
312-319, 2022.

[35] M. O’Connell, G. Shi, X. Shi, K. Azizzadenesheli, A. Anandkumar, Y. Yue, and S.-J. Chung.
Neural-fly enables rapid learning for agile flight in strong winds. Science Robotics, 7(66):
eabm6597, 2022.

[36] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots. In
Robotics: Science and Systems, 2021.

[37] J. Xing, L. Geles, Y. Song, E. Aljalbout, and D. Scaramuzza. Multi-task reinforcement learning
for quadrotors. In IEEE Robotics and Automation Letters (RA-L). IEEE, 2024.

[38] L. Metz, C. D. Freeman, S. S. Schoenholz, and T. Kachman. Gradients are not all you need.
arXiv preprint arXiv:2111.05803, 2021.

[39] P.L.Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for neural
networks. Advances in Neural Information Processing Systems, 30, 2017.

[40] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[41] Y. Song, S. bae Kim, and D. Scaramuzza. Learning quadruped locomotion using differentiable
simulation. In 8th Annual Conference on Robot Learning, 2024.

[42] T. Johannink, S. Bahl, A. Nair, J. Luo, A. Kumar, M. Loskyll, J. A. Ojea, E. Solowjow, and
S. Levine. Residual reinforcement learning for robot control. In 2019 International Conference
on Robotics and Automation (ICRA), pages 6023-6029. IEEE, 2019.

[43] J. Xing, A. Romero, L. Bauersfeld, and D. Scaramuzza. Bootstrapping reinforcement learning
with imitation for vision-based agile flight. In 8th Annual Conference on Robot Learning,
2024.

[44] R. Trumpp, E. Javanmardi, J. Nakazato, M. Tsukada, and M. Caccamo. Racemop: Mapless
online path planning for multi-agent autonomous racing using residual policy learning. In
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
8449-8456. IEEE, 2024.

[45] Z. Han, C. Gao, J. Liu, J. Zhang, and S. Q. Zhang. Parameter-efficient fine-tuning for large
models: A comprehensive survey. Transactions on Machine Learning Research, 2024.

[46] K. Huang, R. Rana, A. Spitzer, G. Shi, and B. Boots. Datt: Deep adaptive trajectory tracking
for quadrotor control. https://github.com/KevinHuang8/DATT, 2024.

[47] K. Zhou, Z. Liu, Y. Qiao, T. Xiang, and C. C. Loy. Domain generalization: A survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 45(4):4396-4415, 2022.

[48] J. Perdomo, T. Zrnic, C. Mendler-Diinner, and M. Hardt. Performative prediction. In Interna-
tional Conference on Machine Learning, pages 7599-7609. PMLR, 2020.

11

https://github.com/KevinHuang8/DATT

A Low-Fidelity Quadrotor Dynamics Model

We model the quadrotor as a point mass, and use p € R3 R € SO(3) and v € R? to denote its
position, orientation matrix, and linear velocity in the global frame, respectively. Furthermore, let
c € Rand w € R? represent the commanded collective thrust and body rates (angular velocity)
respectively. The low-fidelity quadrotor dynamics is given by:

p v
dj:@ Vecqu) = Ve}zz(?_[:;gx) 3)

where [-]x denotes the skew-symmetric matrix operator and vec(-) indicates vectorization of a ma-
trix, ¢ = [0, 0, c]—r is the collective thrust vector, and g is the gravity vector.

B Reward Definitions for Evaluation Tasks

For both the stabilizing hover and trajectory tracking tasks, the reward at each time step ¢ is defined
as a sum of position, velocity, and actuation reward terms:

ry = 1P 4yl et 4)
For stabilizing hover, the individual reward terms are given by:
T?OS =-1.0- LH(5 : (Pt - pdes))

ry®' = —0.1- Ly(v;) — 0.1 Lyy(wy) ®
7";5 =—-0.5- LH(ut - Uhover)

where Ly is the Huber loss, and whover = [9.81, 0,0, O}T is the mass-normalized action required to
counteract gravity.

For trajectory tracking, the individual reward terms are given by:

P = —1.0 - Lu(p: — p}*")
T;/el —_10. LH('Ut B ’U;Ef) (6)
’/‘?Ct = _-0.1- LH(ut - uhover)

Here, pf/ef and vief are respectively the corresponding position and velocity of the reference trajec-

tory at time ¢. As shown in Fig. 5, both the Circle and Figure-8 trajectories lie in the horizontal
xy-plane at a height of 1 m above the ground. The Circle trajectory has a radius of 1 m and a period
of 3 seconds. The Figure-8 trajectory spans 3 m and 1 m across the x and y directions respectively,
and has a period of 5 seconds. Both trajectories start at the point (0,0, 1) m.

Z [m]
1.0

0.5
Y [m]

—0.5

X [m] I3 Z1s
(a) Circle (b) Figure-8

Figure 5: The Circle and Figure-8 reference trajectories, with periods of 3 seconds and 5 seconds respectively.

12

C Optimizing Runtime Efficiency and Performance

We conducted an analysis using the state-based stabilizing hover task to justify two key design
choices in the differentiable simulation pipeline: 1) low-fidelity analytical dynamics model for sim-
ulation, and 2) gradient backpropagation only through the analytical dynamics model. Given that
a key objective is to minimize runtime while maintaining policy performance, we compared the
training time and policy performance for each design choice. We used the same realistic quadrotor
simulator [11] and added a constant uniform acceleration disturbance of 2 m/s? in the positive x-axis
direction. We first collected 50 rollout trajectories (3 seconds each) of the base hovering policy from
50 random starting configurations around the hovering target, and then used the generated residual
samples to train a single residual dynamics network for 200 epochs. Finally, we adapted the base
policy by running 100 epochs of policy training across 100 parallel environments, and evaluated the
final steady-state errors from the hovering target across 8 rollout trajectories.

12 _07
@ 10 Ta/ 0.6 =
= Ho4
I 6 20
on 803
) E0.
g 4 G
‘= >0.2
= =] L =
=2 go1 == o
%7}
0~ high-fid, — high-fid, — Tow-Aid, low-fid, 0.0 Hase policy ~ high-id, — high-fid, Tow-Ad, Tow-fd,
res forward res forward, res forward res forward, (no adapt) res forward res forward, res forward res forward,
res backward res backward res backward res backward
(a) Training time (b) Final steady-state error

Figure 6: (left) Policy training times using four different simulation configurations. (right) Resulting policy
performances compared against the base policy performance (no adaptation). Error bars show +3 standard
deviations of the error distribution across 8 rollouts for each configuration.

We first compared using the low-fidelity (low-fid) dynamics model (3) against using a high-fidelity
model (high-fid) which simulates body and rotor drag effects, the rotor thrust maps, and the low-
level controller dynamics, as the analytical dynamics model together with the residual dynamics
network for forward simulation (res forward). We found that using the low-fidelity model achieves
approximately 2-times faster training (see Fig. 6a) than using the high-fidelity model, while the
achieved policy performances by both methods were very comparable (see Fig. 6b). For gradi-
ent backpropagation, we found that in addition to backpropagating through the analytical dynamics
model, also performing backpropagation through the learned residual dynamics network (res back-
ward) increases training time by approximately 30% without providing clear benefits to the policy
performance. This is consistent with previous findings [14, 41] that combining accurate forward
simulation with a surrogate gradient which points in approximately the same direction as the true
gradient vector accelerates policy training without impacting the resulting policy performance.

D Quadrotor Platform

In this section, we list the physical properties of the quadrotor platforms used in our experiments.

Table 4: Overview of the quadrotor parameters for both simulation and real-world experiments.

Param. Small Quadrotor Large Quadrotor
Mass [kg] 0.12 0.60
Maximum Thrust [N] 14.00 34.00
Arm Length [m] 0.06 0.13
Inertia [g m?] [0.14,0.17, 0.21] [2.41, 1.80, 3.76]

13

	Introduction
	Related Work
	Methodology
	Experiments and Results
	Experimental Setup
	Experimental Results
	Real-World Validation

	Discussions
	Low-Fidelity Quadrotor Dynamics Model
	Reward Definitions for Evaluation Tasks
	Optimizing Runtime Efficiency and Performance
	Quadrotor Platform

